
mailto:m.singh@landfood.unimelb.edu.au


Figure 1. Schematic overview of allergy mechanisms. Allergen molecules enter via mucosal surfaces and are taken up by local antigen-presenting cells (APCs; e.g. dendritic

cells). The allergens taken up by APCs are processed and presented to T helper 2 (TH2) cells. TH2 cells secrete cytokines (e.g. interleukins such as IL-4 and IL-13), which

predominantly stimulate B cells to produce allergen-specific immunoglobulin E (IgE) and also mediate the stimulation of other proinflammatory cells, such as eosinophils.

IgE sensitizes mast cells by binding to Fce receptors (FceRs). Following subsequent exposure, the allergen cross-links IgE molecules, leading to mast-cell degranulation and

the secretion of mediators that are responsible for allergic inflammation. These mediators lead to clinical symptoms of allergy. This process is described in more detail by

Bhalla and Singh [4].
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non-transgenic and seed-raised wild-type plants in terms
of their appearance, growth and reproduction. Crude
peanut extract from the transgenic plants showed up to
25% reduction in Ara h 2 content. Immunoassays using
individual seed extracts confirmed, however, that about
one-quarter of the seeds produced by the transgenic plants
were either free of Ara h 2 or contained a significantly
reduced amount of the allergen. Frequently, however,
only one of the two seeds in a peanut pod showed silencing
Box 1. Pollen–food syndrome

Individuals who suffer from pollen allergy often show adverse

reactions following the ingestion of certain plant-based foods. This

pollen–food syndrome is caused by immunoglobulin E (IgE) cross-

reactive structures that are shared by pollen and food allergens

[10,25,26]. In a majority of allergy sufferers, the symptoms of food

allergy triggered by the ingestion of allergens similar to those

present in pollen are usually restricted to the oral cavity; they

typically include itching and occasional swelling of the lips, mouth,

tongue and throat. For this reason, the reaction is also known as

oral-allergy syndrome (OAS). This syndrome occurs in a high

percentage (50–70%) of individuals with a pollen allergy. For the

majority of patients, the symptoms are minor and of short duration;

a small percentage of patients, however, show severe symptoms of

food allergy, including anaphylaxis. Some studies have demon-

strated that immunotherapy for pollen allergy can reduce or

eliminate OAS symptoms [27,28]. Cooking and processing of foods

often inactivates allergens, reducing the chances of triggering such

allergic reactions.
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of Ara h 2 production. This is not unexpected because
heterozygosity of the transgene in the first transgenic-plant
(T0) generation results in only 50% of seeds inheriting the
silencing construct. Even with the gene-silencing construct
segregating in seeds, the pooled seed extract from T0 plants
showed a significant decrease in allergenicity. Dodo et al.
point out that the ratio of seeds thatare free fromArah2will
be higher in the T1 and T2 progeny of the transgenic T0,
because of an expected increase in the homozygosity of the
RNAi transgene. These data show that T0 plants, which
produce only half of their seeds with reduced allergen con-
tent, are not suitable as a source of hypoallergenic peanuts.
Homozygosity of the transgene occurring in T1 and sub-
sequent generations will ensure that almost all of the seeds
produced will inherit the RNAi construct and thus will be
allergen free.

Eliminating allergens from tomatoes
Tomatoes (Lycopersicon esculentum) are consumed world-
wide. Tomato is a particularly relevant allergen source in
EuropeanMediterranean regions, where tomatoes form an
important part of the diet. Tomato allergy is usually
observed in individuals who are also allergic to birch
pollen. This is due to an oral-allergy syndrome that is
attributable to the presence of similar allergenic com-
ponents in both sources (Box 1). The allergenic proteins
in tomato fruit include Lyc e 1, Lyc e 2 and Lyc c 3. Lyc e 1
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corresponds to profilin, a ubiquitous protein found in all
eukaryotic cells. Plant profilins have been described as
pan-allergens that are present in several food sources, such
as celery, carrots, soybeans, apples, tomatoes and hazel-
nuts, and in the pollen of diverse genera, such as birch,
olive, ragweed and grass genera [14]. Nearly a quarter of
individuals who are allergic to tomato show enhanced
levels of anti-profilin IgE antibodies, which comprise up
to 42% of the total IgE antibodies directed against com-
ponents of tomato fruit extracts. Le et al. [15] used an RNAi
strategy to silence the allergens Lyc e 1.01 and Lyc e 1.02,
two highly similar isoforms of tomato profilin. The RNAi
construct that targeted Lyc e 1.01 and Lyc e 1.02 was under
the control of the constitutive 35S promoter. Immunoas-
says showed a 10-fold reduction in Lyc e 1 accumulation in
transgenic fruits. The transgenic plants exhibited severe
growth retardation along with yield reduction, however,
and some transgenic lines did not bear any fruit. There was
a clear correlation between the degree of gene silencing and
the severity of the dwarf phenotype. These results high-
light the obstacles in removing certain plant allergenic
proteins that perform essential cellular housekeeping
functions.

A non-specific lipid transfer protein (ns-LTP), which
belongs to a multi-gene family of highly conserved
cysteine-rich proteins, has been identified as an allergen
in many fruits, including tomatoes, plums and apples [16].
In tomato, Lyc c 3, a 9-kDa IgE-reactive polypeptide, has
been identified as a ns-LTP.

Le et al. [17] also targeted Lyc e 3 for downregulation by
the RNAi approach. The level of Lyc c 3 in transgenic fruits
was decreased to less than 0.5% of that in wild-type fruits.
The fruit extracts from these transgenic tomatoes were
further tested for allergenicity using a skin prick test
(SPT). SPT involves placing a small amount of allergen
extract on a marked area of skin and then making a small
prick with a sterile lancet. If the substance is allergenic to
the tested individual, a swelling known as a wheal
becomes apparent within 15–20 min. Four out of five
allergic individuals showed dramatically reduced wheal
reaction to Lyc c 3-silenced tomato fruits when compared
with wild-type fruit [18]. The suppression of ns-LTP
remained stable in T2 plants and, in contrast to the Lyc
e 1-silenced plants, the plants lacking Lyc c 3 were indis-
tinguishable from wild-type plants. The fruits of Lyc c 3-
silencedplantswereunaltered in size or number per plant,
showing that removal of Lyc c 3 protein has no effect on
either plant reproduction or fruit yield. These results
demonstrate that plants that are genetically modified
for low allergen character can successfullymatch the yield
of their unmodified counterparts.

The reports on peanuts and tomatoes discussed here
build on previous successes of genetic-engineering-based
silencing of Gly m Bd 30K, the major food allergen from
soybean [19], Mal d1 from apples [20] and a 16k-Da aller-
genic protein from rice grains [21].

Perspectives
The research discussed here has provided initial glimpses
into how genetic engineering can enhance the safety of
plant-based food products through the silencing of aller-
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gen-encoding genes. Before these exciting possibilities can
be realized, some significant challenges remain. We do not
knowwhether most food-plant allergens are equally amen-
able to reduction by genetic engineering. In theory, with
the availability of robust gene-silencing technologies such
as RNAi, we essentially have all the tools required to target
virtually any plant allergen whose sequence has been
determined and hence to create designer hypoallergenic
foods [22–24]. Post-transcriptional gene silencing
approaches such as RNAi make it possible to achieve
the silencing of multi-gene families by introducing a single
RNAi-inducing construct using a genetic-engineering
approach [23]. RNAi is particularly suitable for blocking
allergen production because most allergen-encoding
genes exist as multi-gene families; it is almost impossible
to block allergen production by mutation breeding,
which knocks out a single gene at a time. Control of
tissue-specific suppression is another advantage of RNAi
over gene silencing approaches that are based on mutation
breeding.

The real bottleneck for creating hypoallergenic foods
rests in the essential requirement for some of the major
allergenic proteins for normal plant function. This has
been amply demonstrated in the case of profilin, which
is both an important pan-allergen for humans and a
protein that is essential for plant cell function. On the
other hand, the successful production of developmentally
normal Ara h 2-deficient transgenic peanuts and ns-LTP-
deficient transgenic tomatoes shows that many food aller-
gens can be reduced or eliminated without any associated
yield or growth penalty. It is very unlikely that plant foods
can be engineered to be completely free of allergens, but the
removal of a few immunodominant allergens might reduce
the severity of allergic reactions, substantially improving
the safety of foods. It is hoped that, over time, hypoaller-
genic food products from genetically engineered plants will
reach market shelves. The availability of foods with
enhanced safety profiles might help to increase the con-
sumer acceptability of genetic engineering. Genetically
engineered hypoallergenic plants might one day be estab-
lished as a useful adjunct to allergen avoidance as a
strategy for the management of food allergy symptoms.
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Letters
Cisgenesis and intragenesis, sisters in innovative
plant breeding
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In a recent issue of Trends in Plant Science, Caius
Rommens et al. [1] provided a valuable overview of intra-
genic modification in the context of other plant breeding
approaches. These authors defined an intragenic plant as a
genetically modified plant that only contains genetic
elements fromwithin the sexual compatibility group. Intra-
genesis, an innovative gene technology breeding method,
creates new geneswith desired traits by isolating functional
genetic elements such as promoters, coding parts or termin-
ators of existing genes, rearranging them in vitro, and
inserting this new ‘intragenic’ DNA combination back into
the plant. According to Rommens et al. [1], this approach
mimics traditional plant breeding, with the added
advantage that the sequence of the inserted DNA is far
better known than is DNA used in traditional plant-breed-
ing technologies such as introgression breeding. Therefore,
they state that intragenesis is at least as safe as traditional
breeding. Consequently, they argue that intragenic crops
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